中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Issue 1
Jan.  2021
Turn off MathJax
Article Contents
LI Jing, XUE Xun. Spatial flatness and large-scale Lorentz violation[J]. Journal of East China Normal University (Natural Sciences), 2021, (1): 67-81. doi: 10.3969/j.issn.1000-5641.202022004
Citation: LI Jing, XUE Xun. Spatial flatness and large-scale Lorentz violation[J]. Journal of East China Normal University (Natural Sciences), 2021, (1): 67-81. doi: 10.3969/j.issn.1000-5641.202022004

Spatial flatness and large-scale Lorentz violation

doi: 10.3969/j.issn.1000-5641.202022004
  • Received Date: 2020-03-09
  • Publish Date: 2021-01-27
  • There is an inconsistency between the Hubble parameter obtained from local measurements and model-based parameters obtained from cosmic microwave background (CMB) measurements. This inconsistency motivated us to consider new cosmological models based on $\Lambda {\rm{CDM}}$(Lambda Cold Dark Matter Model), such as a large-scale Lorentz violation model with non-vanishing spatial curvature. The degeneracy among the spatial curvature, cosmological constant, and cosmological contortion distribution makes the model viable for interpretation of the observation data. By comparing the luminosity distance modulus and redshift with the model prediction and calculating the change in matter density as well as the cosmological constant over time, we limit the spatial curvature density to a certain range. Accordingly, we discuss the performance of the large-scale Lorentz violation model with non-vanishing spatial curvature under these constraints.
  • loading
  • [1]
    AGHANIM N, AKRAMI Y, ASHDOWN M, et al. Planck 2018 results(VI): Cosmological parameters [EB/OL]. (2019-09-20)[2020-04-01]. https://arxiv.org/abs/1807.06209.
    [2]
    ADE P A R, AGHANIM N, ARMITAGE-CAPLAN C, et al. Planck 2013 results(XVI): Cosmological parameters [J]. Astronomy and Astrophysics, 2014, 571: Article number A16. DOI:  10.1051/0004-6361/201321591.
    [3]
    RIESS A G, CASERTANO S, YUAN W. Milky Way Cepheid standards for measuring cosmic distances and application to Gaia DR2: Implications for the Hubble constant [J]. The Astrophysical Journal, 2018, 861(2): Article number 126. DOI:  10.3847/1538-4357/aac82e.
    [4]
    VIREY J M, TALON-ESMIEU D, EALET A, et al. On the determination of curvature and dynamical dark energy [J]. Journal of Cosmology and Astroparticle Physics, 2008(12): Article number 008. DOI:  10.1088/1475-7516/2008/12/008.
    [5]
    WANG Y, MUKHERJEE P. Observational constraints on dark energy and cosmic curvature [J]. Physical Review D, 2007, 76(10): 103533. DOI:  10.1103/PhysRevD.76.103533.
    [6]
    CLARKSON C, CORTES M, BASSETT B. Dynamical dark energy or simply cosmic curvature? [J]. Journal of Cosmology and Astroparticle Physics, 2007(8): Article number 11. DOI:  10.1088/1475-7516/2007/08/011.
    [7]
    REST A, SCOLNIC D, FOLEY R J, et al. Cosmological constraints from measurements of type Ia supernovae discovered during the first 1.5 yr of the Pan-STARRS1 survey [J]. The Astrophysical Journal, 2014, 795(1): Article number 44. DOI:  10.1088/0004-637X/795/1/44.
    [8]
    KUMAR S. Consistency of the nonflat ΛCDM model with the new result from BOSS [J]. Physical Review D, 2015, 92(10): 103512. DOI:  10.1103/PhysRevD.92.103512.
    [9]
    HUANG Q G, LI M. The holographic dark energy in a non-flat universe [J]. Journal of Cosmology and Astroparticle Physics, 2004, 2004(8): Article number 13. DOI:  10.1088/1475-7516/2004/08/013.
    [10]
    SHEN J, XUE X. Large-scale Lorentz violation gravity and dark energy [EB/OL]. (2018-10-13)[2020-04-01]. https://arxiv.org/abs/1802.03502.
    [11]
    ZHAI H, SHEN J, XUE X. The effective quintessence from string landscape [EB/OL]. (2019-07-01)[2020-04-01]. https://arxiv.org/abs/1906.11860.
    [12]
    LI Q, LI J, ZHOU Y X, et al. The effective potential originating from swampland and the non-trivial Brans-Dicke coupling [EB/OL]. (2020-03-20)[2020-04-01]. https://arxiv.org/abs/2003.09121.
    [13]
    SHANKS T, HOGARTH L, METCALFE N. Gaia Cepheid parallaxes and ‘Local Hole’relieve H0 tension [J]. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 484(1): L64-L68. DOI:  10.1093/mnrasl/sly239.
    [14]
    RIESS A G, CASERTANO S, KENWORTHY D A, et al. Seven problems with the claims related to the Hubble tension in arXiv: 1810.02595 [EB/OL]. (2018-10-08)[2020-04-01]. https://arxiv.org/abs/1810.03526.
    [15]
    VON MARTTENS R, MARRA V, CASARINI L, et al. Null test for interactions in the dark sector [J]. Physical Review D, 2019, 99(4): 043521. DOI:  10.1103/PhysRevD.99.043521.
    [16]
    BENGALY C A P, ANDRADE U, ALCANIZ J S. How does an incomplete sky coverage affect the Hubble Constant variance? [J]. The European Physical Journal C, 2019, 79(9): Article number 768. DOI:  10.1140/epjc/s10052-019-7284-4.
    [17]
    ABBOTT B P, The LIGO Scientific Collaboration, The Virgo Collaboration, et al. GW170817: Observation of gravitational waves from a binary neutron star inspiral [J]. Physical Review Letters, 2017, 119(16): 161101. DOI:  10.1103/PhysRevLett.119.161101.
    [18]
    The LIGO Scientific Collaboration, The Virgo Collaboration, The 1M2H Collaboration, et al. A gravitational-wave standard siren measurement of the Hubble constant [J]. Nature, 2017, 551: 85-88. DOI:  10.1038/nature24471.
    [19]
    FISHBACH M, GRAY R, HERNANDEZ I M, et al. A standard siren measurement of the Hubble constant from GW170817 without the electromagnetic counterpart [J]. The Astrophysical Journal Letters, 2019, 871(1): Article number L13. DOI:  10.3847/2041-8213/aaf96e.
    [20]
    MORTLOCK D J, FEENEY S M, PEIRIS H V, et al. Unbiased Hubble constant estimation from binary neutron star mergers [J]. Physical Review D, 2019, 100(10): 103523. DOI:  10.1103/PhysRevD.100.103523.
    [21]
    FEENEY S M, PEIRIS H V, WILLIAMSON A R, et al. Prospects for resolving the Hubble constant tension with standard sirens [J]. Physical Review Letters, 2019, 122(6): 061105. DOI:  10.1103/PhysRevLett.122.061105.
    [22]
    HOTOKEZAKA K, NAKAR E, GOTTLIEB O, et al. A Hubble constant measurement from superluminal motion of the jet in GW170817 [J]. Nature Astronomy, 2019, (3): 940-944. DOI:  10.1038/s41550-019-0820-1.
    [23]
    CHEN H Y, FISHBACH M, HOLZ D E. A two per cent Hubble constant measurement from standard sirens within five years. [J]. Nature, 2018, 562: 545-547. DOI:  10.1038/s41586-018-0606-0.
    [24]
    VITALE S, CHEN H Y. Measuring the Hubble constant with neutron star black hole mergers [J]. Physical Review Letters, 2018, 121(2): 021303. DOI:  10.1103/PhysRevLett.121.021303.
    [25]
    MIAO H T, HUANG Z Q. The H0 tension in non-flat QCDM cosmology [J]. The Astrophysical Journal, 2018, 868(1): Article number 20. DOI:  10.3847/1538-4357/aae523.
    [26]
    BOLEJKO K. Emerging spatial curvature can resolve the tension between high-redshift CMB and low-redshift distance ladder measurements of the Hubble constant [J]. Physical Review D, 2018, 97(10): 103529. DOI:  10.1103/PhysRevD.97.103529.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(4)

    Article views (36) PDF downloads(0) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return