中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Issue 1
Jan.  2021
Turn off MathJax
Article Contents
LI Jiaxin, DONG Guangjiong. Theoretical simulations of the square potential barrier with a super-Gaussian beam[J]. Journal of East China Normal University (Natural Sciences), 2021, (1): 129-136. doi: 10.3969/j.issn.1000-5641.202022008
Citation: LI Jiaxin, DONG Guangjiong. Theoretical simulations of the square potential barrier with a super-Gaussian beam[J]. Journal of East China Normal University (Natural Sciences), 2021, (1): 129-136. doi: 10.3969/j.issn.1000-5641.202022008

Theoretical simulations of the square potential barrier with a super-Gaussian beam

doi: 10.3969/j.issn.1000-5641.202022008
  • Received Date: 2020-04-08
  • Publish Date: 2021-01-27
  • The square potential barrier is an ideal model for investigation of quantum tunneling. We simulate the square potential barrier by using the dipole potential for the interaction between an atom and a blue-detuned far-off-resonant super-Gaussian beam, as well as the ponderomotive potential for the interaction between an electron and a super-Gaussian beam. A comparison between the numerical results for scattering by the super-Gaussian potential barrier and the analytical results for scattering by a square potential barrier shows that a super-Gaussian beam with an order exceeding 20 could simulate a square potential barrier accurately. We also show that two super-Gaussian beams could be used to study the resonant quantum tunneling effect. In summary, our results could be applied to an experimental investigation of quantum tunneling through a square potential barrier.
  • loading
  • [1]
    HUND F. On the interpretation of molecular spectra [J]. Zeitschrift für Physik, 1927, 43: 805-811.
    [2]
    NORDHEIM L. Zur theorie der thermischen emission und der reflexion von elektronen an metallen [J]. Zeitschrift für Physik, 1928, 46: 833-855.
    [3]
    OPPENHEIMER J R. Three notes on the quantum theory of aperiodic effects [J]. Physical Review, 1928, 31: 66-81.
    [4]
    GAMOW G. Zur quantentheorie des atomkernes [J]. Zeitschrift für Physik, 1928, 51(3/4): 204-212.
    [5]
    GURNEY R W, CONDON E U. Wave mechanics and radioactive disintegration [J]. Nature, 1928, 122(3073): 439-439.
    [6]
    GURNEY R W, CONDON E U. Quantum mechanics and radioactive disintegration [J]. Physical Review, 1929, 33(2): 127-140.
    [7]
    MILLIKAN R A, EYRING C F. Laws governing the pulling of electrons out of metals by intense electrical fields [J]. Physical Review, 1926, 27(1): 51-67.
    [8]
    BÜTTIKER M, IMRY Y, LANDAUER R, et al. Generalized many-channel conductance formula with application to small rings [J]. Physical Review B, 1985, 31(10): 6207-6215.
    [9]
    BARDEEN J. Tunnelling from a many-particle point of view [J]. Physical Review Letters, 1961, 6(2): 57-59.
    [10]
    ESAKI L. New phenomenon in narrow germanium P-N junctions [J]. Physical Review, 1958, 109(2): 603-604.
    [11]
    BINNIG G, ROHRER H, GERBER C, et al. Surface studies by scanning tunneling microscopy [J]. Physical Review Letters, 1982, 49(1): 57-61.
    [12]
    TERSOFF J, HAMANN D R. Theory and application for the scanning tunneling microscope [J]. Physical Review Letters, 1983, 50(25): 1998-2001.
    [13]
    曾谨言. 量子力学(卷1) [M]. 2版. 北京: 北京大学出版社, 1998: 63-68.
    [14]
    OLKHOVSKY V S, RECAMI E. Developments in the time analysis of tunneling processes [J]. Physics Reports, 1992, 214(6): 339-357.
    [15]
    OLKHOVSKY V S, RECAMI E, JAKIEL J. Unified time analysis of photon and particle tunnelling [J]. Physics Reports, 2004, 398(3): 133-178.
    [16]
    SHAFIR D, SOIFER H, BRUNER B D, et al. Resolving the time when an electron exits a tunnelling barrier [J]. Nature, 2012, 485(7398): 343-346.
    [17]
    LANDSMAN A S, KELLER U. Attosecond science and the tunnelling time problem [J]. Physics Reports, 2015, 547(5): 1-24.
    [18]
    KWIAT P, STEINBERG A, CHIAO R. Measurement of the single-photon tunneling time [J]. Physical Review Letters, 1993, 71(5): 708-711.
    [19]
    LANDAUER R, MARTIN T. Barrier interaction time in tunneling [J]. Reviews of Modern Physics, 1994, 66(1): 217-228.
    [20]
    SPIELMANN C, SZIPÖCS R, STINGL A, et al. Tunneling of optical pulses through photonic band gaps [J]. Physical Review Letters, 1994, 73(17): 2309-2311.
    [21]
    TSU R, ESAKI L. Tunneling in a finite superlattice [J]. Applied Physics Letters, 1973, 22(11): 562-565.
    [22]
    CHANG L L, ESAKI L, TSU R. Resonant tunneling in semiconductor double barriers [J]. Applied Physics Letters, 1974, 24(12): 593-595.
    [23]
    SHEALY D L, HOFFNAGLE J A. Beam shaping profiles and propagation [C]// Proceedings SPIE 5876, Laser Beam Shaping VI. 2005: 58760D. DOI: 10.1117/12.619305.
    [24]
    DICKEY F M, WEICHMAN L S, SHAGAM R N. Laser beam shaping techniques [C]// Proceedings of the SPIE, Volume 4065 : High-Power Laser Ablation III. SPIE, 2000: 338-348.
    [25]
    CHEN H X, SUI Z, CHEN Z P, et al. Laser beam shaping using liquid crystal spatial light modulator [J]. Acta Optica Sinica, 2001, 21(9): 1107-1111.
    [26]
    LIU J S, CHENG Q Y, YUE D G, et al. Dynamical analysis of the effect of super-Gaussian laser pulses on molecular orientation [J]. Laser Physics, 2018, 28(12): 1-7.
    [27]
    SCHIFFER M, RAUNER M, KUPPENS S, et al. Guiding, focusing and cooling of atoms in a strong dipole potential [J]. Applied Physics B, 1998, 67(6): 705-708.
    [28]
    KUPPENS S, RAUNER M, SCHIFFER M, et al. Polarization-gradient cooling in a strong doughnut-mode dipole potential [J]. Physical Review A, 1998, 58(4): 3068-3079.
    [29]
    SILVESTRI S D, LAPORTA P, MAGNI V, et al. Unstable laser resonators with super-Gaussian mirrors [J]. Optics Letters, 1988, 13(3): 201-203.
    [30]
    LIU J S, TAGHIZADEH M R. Iterative algorithm for the design of diffractive phase elements for laser beam shaping [J]. Optics Letters, 2002, 27(16): 1463-1465.
    [31]
    LIU J S, CALEY A J, TAGHIZADEH M R. Symmetrical iterative Fourier-transform algorithm using both phase and amplitude freedoms [J]. Optics Communications, 2006, 267(2): 347-355.
    [32]
    LIU J S, THOMSON M J, TAGHIZADEH M R. Automatic symmetrical iterative Fourier-transform algorithm for the design of diffractive optical elements for highly precise laser beam shaping [J]. Journal of Modern Optics, 2006, 53(4): 461-471.
    [33]
    ZHAO Y, LI Y P, ZHOU Q G. Vector iterative algorithm for the design of diffractive optical elements applied to uniform illumination [J]. Optics Letters, 2004, 29(7): 664-666.
    [34]
    林勇, 胡家升, 吴克难. 一种用于光束整形的衍射光学元件设计算法 [J]. 光学学报, 2007, 27(9): 1682-1686.
    [35]
    BÉLANGER P A, LACHANCE R L, PARÉ C. Super-Gaussian output from a CO2 laser by using a graded-phase mirror resonator [J]. Optics Letters, 1992, 17(10): 739-741.
    [36]
    DONG G J, EDVADSSON S, LU W, et al. Super-Gaussian mirror for high-field-seeking molecules [J]. Physical Review A, 2005, 72(3): 031605.
    [37]
    DUAN Z, FAN B, YUAN C H, et al. Quantum tunneling time of a Bose-Einstein condensate traversing through a laser-induced potential barrier [J]. Physical Review A, 2010, 81(5): 055602.
    [38]
    ZHOU L, ZHENG R F, ZHANG W. Spin-sensitive atom mirror via spin-orbit interaction [J]. Physical Review A, 2016, 94(5): 053630.
    [39]
    HARTEMANN F V, VAN METER J R, TROHA A L, et al. Three-dimensional relativistic electron scattering in an ultrahigh-intensity laser focus [J]. Physical Review E, 1998, 58(4): 5001-5012.
    [40]
    STUPAKOV G V, ZOLOTOREV M S. Ponderomotive laser acceleration and focusing in vacuum for generation of attosecond electron bunches [J]. Physical Review Letters, 2001, 86(23): 5274-5277.
    [41]
    FRIEDRICH B, HERSCHBACH D. Alignment and trapping of molecules in intense laser fields [J]. Physical Review Letters, 1995, 74(23): 4623-4626.
    [42]
    刘盛纲. 自由电子激光的空间电荷波理论 [J]. 强激光与粒子束, 1990(2): 131-147.
    [43]
    张永德. 量子力学 [M]. 2版. 北京: 科学出版社, 2008: 55-59.
    [44]
    MATHEWS J H, FINK K K. Numerical methods using matlab: International edition [M]. [S.l]: Prentice-Hall Inc, 2004: 339.
    [45]
    LAI H M, CHAN S W. Large and negative Goos–Hänchen shift near the Brewster dip on reflection from weakly absorbing media [J]. Optics Letters, 2002, 27(9): 680-682.
    [46]
    SHEN N H, CHEN J, WU Q Y, et al. Large lateral shift near pseudo-Brewster angle on reflection from a weakly absorbing double negative medium [J]. Optics Express, 2006, 14(22): 10574-10579.
    [47]
    KAMIŃSKI P, DROŻDŻ S, PLOSZAJCZAK M, et al. Even-odd anomalous tunneling effect [J]. Physical Review C, 1993, 47(4): 1548-1552.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article views (100) PDF downloads(0) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return