中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Issue 1
Jan.  2021
Turn off MathJax
Article Contents
FEI Meng, XIE Wei. Electric field modulated photoluminescence from WS2 monolayers[J]. Journal of East China Normal University (Natural Sciences), 2021, (1): 137-143. doi: 10.3969/j.issn.1000-5641.202022010
Citation: FEI Meng, XIE Wei. Electric field modulated photoluminescence from WS2 monolayers[J]. Journal of East China Normal University (Natural Sciences), 2021, (1): 137-143. doi: 10.3969/j.issn.1000-5641.202022010

Electric field modulated photoluminescence from WS2 monolayers

doi: 10.3969/j.issn.1000-5641.202022010
  • Received Date: 2020-06-11
  • Publish Date: 2021-01-27
  • Two-dimensional materials have been used in applications across a variety of fields; transition metal dichalcogenides(TMDCs), in particular, are a candidate for use in the field of optoelectronics due to the presence of a band gap. In this paper, WS2 monolayers prepared by micro-mechanical exfoliation are transferred to two micro-period electrode structures. We found that the photoluminescence of the material is modulated by external bias. We studied the effects of bias on the photoluminescence of the WS2 monolayer at room temperature and low temperature. The corresponding characteristics and physical mechanisms of the photoluminescence(PL) spectra, moreover, are analyzed and discussed. With the application of bias to modulate the optical properties of the WS2 monolayer, it is expected that the technology can be applied to many photoelectric products, including field effect transistors, photodetectors, flexible electronic devices, and heterojunction devices.
  • loading
  • [1]
    DAS S, KIM M, LEE J, et al. Synthesis, properties, and applications of 2-D materials: A comprehensive review [J]. Critical Reviews in Soild State and Materials Sciences, 2014, 39(4): 231-252. DOI:  10.1080/10408436.2013.836075.
    [2]
    GRIGORENKO A N, POLINI M, NOVOSELOV K S. Graphene plasmonics [J]. Nature Photonics, 2012, 6(11): 749-758. DOI:  10.1038/nphoton.2012.262.
    [3]
    CASTRO E V, NOVOSELOV K S, MOROZOV S V, et al. Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect [J]. Physical Review Letters, 2007, 99(21): 6802-6806. DOI:  10.1103/PhysRevLett.99.216802.
    [4]
    MAK K F, LEE C, HONE J, et al. Atomically thin MoS2: A new direct-gap semiconductor [J]. Physical Review Letters, 2010, 105(13): 6805-6809. DOI:  10.1103/PhysRevLett.105.136805.
    [5]
    ZHANG Q, LU J, WANG Z, et al. Reliable synthesis of large-area monolayer WS2 single crystals, films, and heterostructures with extraordinary photoluminescence induced by water intercalation [J]. Advanced Opyical Materials, 2018, 6(12): 1701347-1701356. DOI:  10.1002/adom.201701347.
    [6]
    CONG C, SHANG J, WU X, et al. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition [J]. Advanced Opyical Materials, 2014, 2(2): 131-136. DOI:  10.1002/adom.201300428.
    [7]
    KORMANYOS A, ZOLYOMI V, DRUMMOND N D, et al. Spin-orbit coupling, quantum dots, and qubits in monolayer transition metal dichalcogenides [J]. Physical Review X, 2014, 4(1): 011034-011050. DOI:  10.1103/PhysRevX.4.011034.
    [8]
    ROY S, BERMEL P. Electronic and optical properties of ultra-thin 2D tungsten disulfide for photovoltaic applications [J]. Solar Energy Materials and Solar Cells, 2018, 174(C): 370-379. DOI:  10.1016/j.solmat.2017.09.011.
    [9]
    WANG L, WANG W, WANG Q, et al. Study on photoelectric characteristics of monolayer WS2 films [J]. RSC Advances, 2019, 9(64): 37195-37200. DOI:  10.1039/c9ra07924f.
    [10]
    HUANG X, ZENG Z, ZHANG H. Metal dichalcogenide nanosheets: preparation, properties and applications [J]. Chemical Society Reviews, 2013, 42(5): 1934-1946. DOI:  10.1039/c2cs35387c.
    [11]
    ZHAO C, NORDEN T, ZHANG P, et al. Enhanced valley splitting in monolayer WSe2 due to magnetic exchange field [J]. Nature Nanotechnology, 2017, 12(8): 757. DOI:  10.1038/nnano.2017.68.
    [12]
    LIU Y, HUANG W, CHEN W, et al. Plasmon resonance enhanced WS2 photodetector with ultra-high sensitivity and stability [J]. Applied Surface Science, 2019, 481: 1127-1132. DOI:  10.1016/j.apsusc.2019.03.179.
    [13]
    LIN T W, SADHASIVAM T, WANG A Y, et al. Ternary composite nanosheets with MoS2/WS2/graphene heterostructures as high-performance cathode materials for supercapacitors [J]. ChemElectroChem, 2018, 5(7): 1024-1031. DOI:  10.1002/celc.201800043.
    [14]
    TANG B, YU Z G, HUANG L, et al. Direct n- to p-Type channel conversion in monolayer/few-layer WS2 field-effect transistors by atomic nitrogen treatment [J]. ACS Nano, 2018, 12(3): 2506-2513. DOI:  10.1021/acsnano.7b08261.
    [15]
    YUE Y, CHEN J, ZHANG Y, et al. Two-dimensional high-quality monolayered triangular WS2 flakes for field-effect transistors [J]. ACS Applied Materials & Interfaces, 2018, 10(26): 22435-22444. DOI:  10.1021/acsami.8b05885.
    [16]
    ZHAO H, GUO Q, XIA F, et al. Two-dimensional materials for nanophotonics application [J]. Nanophotonics, 2015, 4(2SI): 128-142. DOI:  10.1515/nanoph-2014-0022.
    [17]
    COLEMAN J N, LOTYA M, O’NEILL A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials [J]. Science, 2011, 331(6017): 568-571. DOI:  10.1126/science.1194975.
    [18]
    LIU J, LO T W, SUN J, et al. A comprehensive comparison study of CVD-grown and mechanically exfoliated fewlayered WS2: The vibrational and optical properties [J]. Journal of Materials Chemistry C, 2017, 5(43): 1123911245. DOI:  10.1039/c7tc02831h.
    [19]
    HE Z Y, SHENG Y W, RONG Y M, et al. Layer-dependent modulation of tungsten disulfide photoluminescence by lateral electric fields [J]. ACS Nano, 2015, 9(3): 2740-2748. DOI:  10.1021/nn506594a.
    [20]
    LI X, WANG Y, FRY J N, et al. Tunneling field-effect junctions with WS2 barrier [J]. Journal of Physics and Chemistry of Solids, 2019, 128: 343-350. DOI:  10.1016/j.jpcs.2017.12.005.
    [21]
    SHANG J Z, SHEN X N, CONG C X, et al. Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor [J]. ACS Nano, 2015, 9(1): 647-655. DOI:  10.1021/nn5059908.
    [22]
    PLECHINGER G, NAGLER P, KRAUS J, et al. Identification of excitons, trions and biexcitons in single-layer WS2 [J]. Physica Status Solidi (RRL) - Rapid Research Letters, 2015, 9(8): 457-461. DOI:  10.1002/pssr.201510224.
    [23]
    MAK K F, HE K L, LEE C G, et al. Tightly bound trions in monolayer MoS2 [J]. Nature Materials, 2013, 12(3): 207-211. DOI:  10.1038/NMAT3505.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article views (128) PDF downloads(6) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return