中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe2O3/g-C3N4光催化降解罗丹明B性能研究

席清华 黄宜强 陈加祥 聂耳 孙卓

席清华, 黄宜强, 陈加祥, 聂耳, 孙卓. Fe2O3/g-C3N4光催化降解罗丹明B性能研究[J]. 华东师范大学学报(自然科学版), 2021, (3): 151-160. doi: 10.3969/j.issn.1000-5641.2021.03.015
引用本文: 席清华, 黄宜强, 陈加祥, 聂耳, 孙卓. Fe2O3/g-C3N4光催化降解罗丹明B性能研究[J]. 华东师范大学学报(自然科学版), 2021, (3): 151-160. doi: 10.3969/j.issn.1000-5641.2021.03.015
XI Qinghua, HUANG Yiqiang, CHEN Jiaxiang, NIE Er, SUN Zhuo. Study on Fe2O3/g-C3N4 photocatalytic degradation of Rhodamine B[J]. Journal of East China Normal University (Natural Sciences), 2021, (3): 151-160. doi: 10.3969/j.issn.1000-5641.2021.03.015
Citation: XI Qinghua, HUANG Yiqiang, CHEN Jiaxiang, NIE Er, SUN Zhuo. Study on Fe2O3/g-C3N4 photocatalytic degradation of Rhodamine B[J]. Journal of East China Normal University (Natural Sciences), 2021, (3): 151-160. doi: 10.3969/j.issn.1000-5641.2021.03.015

Fe2O3/g-C3N4光催化降解罗丹明B性能研究

doi: 10.3969/j.issn.1000-5641.2021.03.015
详细信息
    通讯作者:

    聂 耳, 男, 工程师, 研究方向为材料科学. E-mail: enie@phy.ecnu.edu.cn

  • 中图分类号: O469

Study on Fe2O3/g-C3N4 photocatalytic degradation of Rhodamine B

  • 摘要: 为了改善g-C3N4比表面积低等缺点, 通过高温热聚合法制备了三维(3D)多孔g-C3N4, 并通过与Fe2O3复合得到Fe2O3/g-C3N4催化剂, 提高其可见光响应. Fe2O3/g-C3N4在g-C3N4含量为900 mg、罗丹明B(Rhodamine B, RhB)浓度为20 mg·L–1、H2O2为15 mmol时脱色速率最快, 30 min可达到100%. 同时Fe2O3/g-C3N4对其他有机物也表现出较好的降解性能, 在30 min内对甲基橙(Methyl orange, MO)、四环素(Tetracycline, TC)的降解率分别达到80%和90%. 通过活性基团捕获实验探究Fe2O3/g-C3N4的光催化降解机制, 实验结果表明h+和·OH在Fe2O3/g-C3N4光催化降解有机物过程中起到主要作用.
  • 图  1  g-C3N4与Fe2O3/g-C3N4的XRD图谱

    Fig.  1  XRD patterns of g-C3N4 and Fe2O3/g-C3N4

    图  2  g-C3N4与Fe2O3/g-C3N4的FT-IR光谱图

    Fig.  2  FT-IR spectra of g-C3N4 and Fe2O3/g-C3N4

    图  3  g-C3N4与Fe2O3/g-C3N4的SEM图, HR TEM图和EDS元素分布图

    Fig.  3  SEM images, HR TEM images, and EDS mapping of g-C3N4 and Fe2O3/g-C3N4

    图  4  g-C3N4与Fe2O3/g-C3N4的UV-vis图和PL图

    Fig.  4  UV-vis and PL spectra of g-C3N4 and Fe2O3/g-C3N4

    图  5  g-C3N4与Fe2O3/g-C3N4的N2吸附-脱附等温线

    Fig.  5  N2 adsorption-desorption isotherma of g-C3N4 and Fe2O3/g-C3N4

    图  6  Fe2O3相对含量对RhB降解的影响

    Fig.  6  Degradation of RhB with varying relative levels of Fe2O3

    图  7  RhB浓度对RhB降解的影响(CN-3)

    Fig.  7  Degradation of RhB with varying RhB concentration (CN-3)

    图  8  添加h+、·OH捕获剂条件下RhB的降解(CN-3, RhB 20 mg·L–1)

    Fig.  8  Degradation of RhB with the addition of h+ and ·OH scavengers (CN-3, RhB 20 mg·L–1)

    图  9  H2O2含量对RhB降解的影响(CN-3, RhB 20 mg·L–1)

    Fig.  9  Degradation of RhB with varying levels of H2O2 (CN-3, RhB 20 mg·L–1)

    图  10  对其他有机物的降解(15 mmol H2O2)

    Fig.  10  Degradation of different organics (15 mmol H2O2)

    表  1  g-C3N4和Fe2O3/g-C3N4的比表面积分析

    Tab.  1  Surface area analysis of g-C3N4 and Fe2O3/g-C3N4

    样品比表面积/(m2·g–1)孔容/(cm3·g–1)孔径/nm
    CN-1610.352.98
    CN-2720.363.84
    CN-3720.363.84
    CN-4740.353.82
    CN-5740.353.83
    下载: 导出CSV
  • [1] TIAN S Y, GUO J H, ZHAO C, et al. Preparation of cellulose/graphene oxide composite membranes and their application in removing organic contaminants in wastewater [J]. Journal of Nanoscience and Nanotechnology, 2019, 19(4): 2147-2153.
    [2] LIU D, ZHOU J, WANG J, et al. Enhanced visible light photoelectrocatalytic degradation of organic contaminants by F and Sn co-doped TiO2 photoelectrode [J]. Chemical Engineering Journal, 2018, 344: 332-341.
    [3] GARCIA-SEGURA S, BRILLAS E. Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters [J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2017, 31: 1-35.
    [4] CORCORAN E B, MCMULLEN J P, LÉVESQUE F, et al. Photon equivalents as a parameter for scaling photoredox reactions in flow: Translation of photocatalytic C−N cross-coupling from lab scale to multikilogram scale [J]. Angewandte Chemie, 2020, 132(29): 11964-11968.
    [5] FARES A, RAHUL B, MOAYYED S. Solar oxidation of toluene over Co doped nano-catalyst [J]. Chemosphere, 2020, 255: 126878.
    [6] DENG H, WANG X C, WANG L, et al. Enhanced photocatalytic reduction of aqueous Re(Ⅶ) in ambient air by amorphous TiO2/g-C3N4 photocatalysts: Implications for Tc(Ⅶ) elimination [J]. Chemical Engineering Journal, 2020, 401: 125977.
    [7] DUAN B, MEI L. A Z-scheme Fe2O3 /g-C3N4 heterojunction for carbon dioxide to hydrocarbon fuel under visible illuminance [J]. Journal of Colloid And Interface Science, 2020, 575: 265-273.
    [8] CHAUHAN D K, JAIN S, BATTULA V R, et al. Organic motif's functionalization via covalent linkage in carbon nitride: An exemplification in photocatalysis [J]. Carbon, 2019, 152: 40-58.
    [9] KADI M W, MOHAMED R M, ISMAIL A A, et al. Decoration of g-C3N4 nanosheets by mesoporous CoFe2O4 nanoparticles for promoting visible-light photocatalytic Hg(Ⅱ) reduction [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603: 125306.
    [10] LI Y, WANG S, CHANG W, et al. Co-monomer engineering optimized electron delocalization system in carbon-bridging modified g-C3N4 nanosheets with efficient visible-light photocatalytic performance [J]. Applied Catalysis B: Environmental, 2020, 274: 119116.
    [11] LU M, SUN Z, ZHANG Y, et al. Construction of cobalt phthalocyanine sensitized SnIn4S8/g-C3N4 composites with enhanced photocatalytic degradation and hydrogen production performance [J]. Synthetic Metals, 2020, 268: 116480.
    [12] HE J, YANG J, JIANG F, et al. Photo-assisted peroxymonosulfate activation via 2D/2D heterostructure of Ti3C2/g-C3N4 for degradation of diclofenac [J]. Chemosphere, 2020, 258: 127339.
    [13] CHENG J, HU Z, LI Q, et al. Fabrication of high photoreactive carbon nitride nanosheets by polymerization of amidinourea for hydrogen production [J]. Applied Catalysis B: Environmental, 2019, 245: 197-206.
    [14] AI M, ZHANG J W, GAO R, et al. MnOx-decorated 3D porous C3N4 with internal donor–acceptor motifs for efficient photocatalytic hydrogen production [J]. Applied Catalysis B: Environmental, 2019, 256: 117805.
    [15] HU X, VATANKHAH-VARNOOSFADERANI M, ZHOU J, et al. Weak hydrogen bonding enables hard, strong, tough, and elastic hydrogels [J]. Adv Mater, 2015, 27(43): 6899-6905.
    [16] TIAN R, LIU D, WANG J, et al. Three-dimensional BiOI/TiO2 heterostructures with photocatalytic activity under visible light irradiation [J]. Journal of Porous Materials, 2018, 25(6): 1805-1812.
    [17] WANG Y, ZHONG K, HUANG Z, et al. Novel g-C3N4 assisted metal organic frameworks derived high efficiency oxygen reduction catalyst in microbial fuel cells [J]. Journal of Power Sources, 2020, 450: 227681.
    [18] ZHANG Y, TIAN P, LI K, et al. C3N4 coordinated metal-organic-framework-derived network as air-cathode for high performance of microbial fuel cell [J]. Journal of Power Sources, 2018, 408: 74-81.
    [19] JIANG J, WANG X, ZHANG C, et al. Porous 0D/3D NiCo2O4/g-C3N4 accelerate emerging pollutant degradation in PMS/vis system: Degradation mechanism, pathway and toxicity assessment [J]. Chemical Engineering Journal, 2020, 397: 125356.
    [20] WU X, LI S, WANG B, et al. Free-standing 3D network-like cathode based on biomass-derived N-doped carbon/graphene/g-C3N4 hybrid ultrathin sheets as sulfur host for high-rate Li-S battery [J]. Renewable Energy, 2020, 158: 509-519.
    [21] ZHANG L, JIN Z, LI Y, et al. Zn–Ni–P nanoparticles decorated g-C3N4 nanosheets applicated as photoanode in photovoltaic fuel cells [J]. Catalysis Letters, 2019, 149(9): 2397-2407.
    [22] GAO H, YANG H, XU J, et al. Strongly coupled g-C3N4 nanosheets-Co3O4 quantum dots as 2D/0D heterostructure composite for peroxymonosulfate activation [J]. Small, 2018, 14: 1801353.
    [23] XI J, XIA H, NING X, et al. Carbon-intercalated 0D/2D hybrid of hematite quantum dots/graphitic carbon nitride nanosheets as superior catalyst for advanced oxidation [J]. Small, 2019, 15(43): 1902744.
    [24] SHENG Y, WEI Z, MIAO H, et al. Enhanced organic pollutant photodegradation via adsorption/photocatalysis synergy using a 3D g-C3N4/TiO2 free-separation photocatalyst [J]. Chemical Engineering Journal, 2019, 370: 287-294.
    [25] RODRIGUEZ J, THIVEL P X, PUZENAT E. Photocatalytic hydrogen production for PEMFC supply: A new issue [J]. International Journal of Hydrogen Energy, 2013, 38(15): 6344-6348.
    [26] WANG Y, HUANG Y, HO W, et al. Biomolecule-controlled hydrothermal synthesis of C-N-S-tridoped TiO2 nanocrystalline photocatalysts for NO removal under simulated solar light irradiation [J]. J Hazard Mater, 2009, 169(1/2/3): 77-87.
    [27] LIU G, DONG G, ZENG Y, et al. The photocatalytic performance and active sites of g-C3N4 effected by the coordination doping of Fe(III) [J]. Chinese Journal of Catalysis, 2020, 41(10): 1564-1572.
    [28] QIN Y, SONG F, AI Z, et al. Protocatechuic acid promoted alachlor degradation in Fe(Ⅲ)/H2O2 fenton system [J]. Environ Sci Technol, 2015, 49(13): 7948-7956.
    [29] QIN Y, ZHANG L, AN T. Hydrothermal carbon-mediated fenton-like reaction mechanism in the degradation of alachlor: Direct electron transfer from hydrothermal carbon to Fe(Ⅲ) [J]. ACS Appl Mater Interfaces, 2017, 9(20): 17115-17124.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  206
  • HTML全文浏览量:  251
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-28
  • 刊出日期:  2021-05-01

目录

    /

    返回文章
    返回