中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Sentinel-1A的长江口近岸风矢量场反演研究

戚纤云 周云轩 田波 于鹏

戚纤云, 周云轩, 田波, 于鹏. 基于Sentinel-1A的长江口近岸风矢量场反演研究[J]. 华东师范大学学报(自然科学版), 2017, (6): 126-135, 146. doi: 10.3969/j.issn.1000-5641.2017.06.012
引用本文: 戚纤云, 周云轩, 田波, 于鹏. 基于Sentinel-1A的长江口近岸风矢量场反演研究[J]. 华东师范大学学报(自然科学版), 2017, (6): 126-135, 146. doi: 10.3969/j.issn.1000-5641.2017.06.012
QI Xian-yun, ZHOU Yun-xuan, TIAN Bo, YU Peng. Sea surface wind vector retrieval off the Yangtze Estuary based on Sentinel-1A[J]. Journal of East China Normal University (Natural Sciences), 2017, (6): 126-135, 146. doi: 10.3969/j.issn.1000-5641.2017.06.012
Citation: QI Xian-yun, ZHOU Yun-xuan, TIAN Bo, YU Peng. Sea surface wind vector retrieval off the Yangtze Estuary based on Sentinel-1A[J]. Journal of East China Normal University (Natural Sciences), 2017, (6): 126-135, 146. doi: 10.3969/j.issn.1000-5641.2017.06.012

基于Sentinel-1A的长江口近岸风矢量场反演研究

doi: 10.3969/j.issn.1000-5641.2017.06.012
基金项目: 

国家自然科学基金 41476151

详细信息
    作者简介:

    戚纤云, 女, 硕士研究生, 研究方向为河口海岸微波遥感.E-mail:qxybeijing0319@hotmail.com

    通讯作者:

    周云轩, 男, 教授, 研究方向为河口海岸变化遥感研究.E-mail:xyzhou@sklec.ecnu.edu.cn

  • 中图分类号: TP732

Sea surface wind vector retrieval off the Yangtze Estuary based on Sentinel-1A

  • 摘要: 选取长江口外近岸海域,以欧空局发射的Sentinel-1A为SAR图像数据源,利用多级小波变换和傅里叶变换获得高精度风向信息,再利用基于GMF的3种CMOD系列模型反演风速,最后将反演结果与同时相的ECMWF模式风场数据以及五组实测数据进行对比.结果表明,除个别包含复杂纹理特征的SAR子图像以外,SAR风场反演精度整体优于ECMWF模式风场.经过多级小波变换后的风向反演结果更优,均方根误差分别为31.6°,29.7°,23.5°.经过二级小波变换之后的整景SAR图像结合风向信息代入到CMOD系列模型中反演得到的风速精度最优,均方根误差控制在0.8 m/s.比较适合长江口外近海海域的是MOD-IFR2和CMOD4,均方根误差分别为1.08 m/s和1.05 m/s.
  • 图  1  试验数据地理位置示意图

    Fig.  1  Geographic locations of SAR images and in-situ data

    图  2  Sentinel-1A图像反演海表风矢量场流程图

    Fig.  2  Flowchart of sea surface wind vector field inversion based on Sentinel-1A

    图  3  预处理后的2016年6月7日长江口近岸Sentinel-1A图像

    Fig.  3  Preprocessed Sentinel-1A image located in Yangtze Estuary offshore on June 7, 2016

    图  4  二维离散小波变换阶层式架构示意图

    Fig.  4  The 2D-discrete wavelet transform structure diagram

    图  5  3级小波变化分解后的低频分量和高频分量

    Fig.  5  Multiscale components of wavelet transform decomposition

    图  6  基于CMOD-ifr2/4/5模型反演结果与验证数据风矢量对比图

    Fig.  6  The inversion results of wind vector based on CMOD-ifr2/4/5 models compared with the validation data

    图  7  长江口近岸风场反演结果图

    注: 分辨率为0.25$^{\circ}\times$0.25$^{\circ}$

    Fig.  7  Retrieved sea surface wind field off the Yangtze Estuary

    表  1  实测数据

    Tab.  1  In-situ data

    实测点 北纬/($^{\circ}$) 东经/($^{\circ}$) 风向/($^{\circ}$) 风速/(m$\cdot $s$^{-1}$)
    S1 31.23 122.22 92.50 7.00
    S2 31.00 122.17 145.07 6.90
    S3 31.33 122.53 100.50 6.10
    S4 31.00 122.53 180.50 8.25
    S5 31.42 122.24 125.50 5.75
    下载: 导出CSV

    表  2  试验区域SAR提取风向信息与验证数据结果

    Tab.  2  S1-S5Wind direction data from SAR and validation data

    风向/(°)
    S1 S2 S3 S4 S5 AAE RMSE
    In-Situ 92.5 145.1 100.5 180.5 125.5
    ECMWF 123.8 119.3 124.1 117.6 126.5 28.896 1 35.080 2
    FFT 99.6 231.6 108.0 201.6 149.3 29.207 7 41.487 6
    A1+FFT 99.1 207.1 90.6 206.1 144.2 24.565 7 31.604 3
    A2+FFT 87.1 200.4 81.2 197.6 151.3 24.585 7 29.735 3
    A3+FFT 89.6 191.0 103.1 178.3 100.2 15.785 7 23.535 2
    下载: 导出CSV

    表  3  实验区域SAR反演风向信息与验证数据结果

    Tab.  3  S1-S5 Wind Speed data from SAR and validation data

    S1 S2 S3 S4 S5 AAE RMSE
    In-Situ 7.0 6.9 6.1 8.3 5.8
    ECMWF 5.1 5.2 4.8 5.1 4.9 1.788 5 1.788 5 1.953 0 1.953 0
    FFT+CMOD4 8.6 7.5 7.3 5.7 5.9 1.220 0 1.475 5
    FFT+CMOD-IFR2 9.7 7.6 7.0 6.1 6.0 1.340 0 1.520 0 1.629 4 1.776 5
    FFT+CMOD5 5.0 5.2 5.0 4.4 4.4 2.000 0 2.224 6
    A1+FFT+CMOD4 8.5 6.4 5.5 6.2 5.4 1.000 0 1.198 7
    A1+FFT+CMOD-IFR2 9.5 6.5 6.4 6.5 5.5 1.040 0 1.220 0 1.387 4 1.491 3
    A1+FFT+CMOD5 6.2 4.7 5.0 5.0 5.0 1.620 0 1.887 6
    A2+FFT+CMOD4 6.6 6.0 5.7 9.4 5.4 0.640 0 0.717 6
    A2+FFT+CMOD-IFR2 7.5 6.3 6.0 7.5 6.0 0.440 0 0.720 0 0.499 0 0.798 7
    A2+FFT+CMOD5 7.5 5.0 5.0 9.4 5.0 1.080 0 1.179 4
    A3+FFT+CMOD4 7.8 6.4 7.3 9.6 5.6 0.800 0 0.913 8
    A3+FFT+CMOD-IFR2 6.2 6.1 7.0 8.8 6.0 0.660 0 0.873 3 0.700 7 0.965 4
    A3+FFT+CMOD5 7.5 5.0 5.0 9.9 5.1 1.160 0 1.281 8
    CMOD4 0.92 1.08
    CMOD-IFR2 0.87 1.05
    CMOD5 1.47 1.64
    下载: 导出CSV
  • [1] JOHANNESSEN J A. Coastal observing systems:The role of synthetic aperture radar[J]. Johns Hopkins Apl Technical Digest, 2000, 21(1):41-48. http://d.wanfangdata.com.cn/OAPaper/oai_doaj-articles_dee14bdcbc2020959c9107b3efe2e774
    [2] GERLING T W. Structure of the surface wind field from the Seasat SAR[J]. Journal of Geophysical Research, 1986:2308-2320. doi:  10.1029/JC091iC02p02308/full
    [3] FETTERER F M, GINERIS D, WACKERMAN C C, et al. Validating a scatterometer wind algorithm for ERS-1 SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(2):479-492. doi:  10.1109/36.662731
    [4] MULLER G, BRUMMER B, ALPERS W, et al. Roll convection within an arctic cold-air outbreak:Interpretation of in situ aircraft measurements and spaceborne SAR imagery by a three-dimensional atmospheric model[J]. Monthly Weather Review, 1999, 127(3):363-380. doi:  10.1175/1520-0493(1999)127<0363:RCWAAC>2.0.CO;2
    [5] WACKERMAN C C. Estimating wind vectors from RADARSAT synthetic aperture radar imagery[R]. Verdian ERIM International Report 10032100-1T, prepared for Office of Naval Research for Contract, 2000(00014).
    [6] HORSTMANN J, KOCH W, LEHNER S, et al. Ocean winds from RADARSAT-1 scan SAR[J]. Canadian Journal of Remote Sensing, 2002, 28(3):524-533. doi:  10.5589/m02-043
    [7] HORSTMANN J, KOCH W, LEHNER S, et al. Ocean wind fields retrieved from the advanced synthetic aperture radar aboard ENVISAT[J]. Ocean Dynamics, 2004, 54(6):570-576. doi:  10.1007/s10236-004-0098-3
    [8] FICHAUX N, RANCHIN T. Combined extraction of high spatial resolution wind speed and wind direction from SAR images:A new approach using wavelet transform[J]. Canadian Journal of Remote Sensing, 2011, 28(3):510-516. doi:  10.5589/m02-038
    [9] DU Y, VACHON P W, WOLFE J, et al. Wind direction estimation from SAR images of the ocean using wavelet analysis[J]. Canadian Journal of Remote Sensing, 2002, 28(3):498-509. doi:  10.5589/m02-029
    [10] LEITE G C, USHIZIMA D, MEDEIROS F N, et al. Wavelet analysis for wind fields estimation[J]. Sensors, 2010, 10(6):5994-6016. doi:  10.3390/s100605994
    [11] 张毅, 蒋兴伟, 宋清涛, 等. C波段地球物理模式函数对比分析研究[J].遥感信息, 2012(1):31-36. http://d.wanfangdata.com.cn/Periodical/ygxx201201007
    [12] LA T V, KHENCHAF A, COMBLET F, et al. Study of wind speed retrievals from Sentinel-1 images using physical models[C]//Antennas and Propagation (EuCAP), 201610th European Conference on. IEEE, 2016:1-4. http://ieeexplore.ieee.org/document/7481445/
    [13] 孔毅, 赵现斌, 艾未华, 等.基于墨西哥帽小波变换的机载SAR海面风场反演[J].解放军理工大学学报(自然科学版), 2011(3):301-306. http://d.wanfangdata.com.cn/Periodical/jfjlgdxxb201103018
    [14] HE Y, ZOU Q. Validation of wind vector retrieval from ENVISAT ASAR images[C]//Geoscience and Remote Sensing Symposium, 2004, IGARSS'04. IEEE, 2004:3184-3187 vol.5. http://www.researchgate.net/publication/224754558_Validation_of_wind_vector_retrieval_from_ENVISAT_ASAR_images
    [15] 宋贵霆, 侯一筠, 何宜军. Comparison of two wind algorithms of ENVISAT ASAR at high wind[J].中国海洋湖沼学报(英文版), 2006, 24(1):92-96. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hyfw200601015&dbname=CJFD&dbcode=CJFQ
    [16] MONALDO F, JACKSON C, PICHEL W, et al. Early validation of operational SAR wind retrievals from Sentinel-1A[C]//Geoscience and Remote Sensing Symposium. IEEE, 2015:1223-1226. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7325993
    [17] PICHEL W G, MONALDO F M, JACKSON C, et al. NOAA operational SAR winds:Current status and plans for Sentinel-1A[C]//Geoscience and Remote Sensing Symposium. IEEE, 2015:4916-4919. http://ieeexplore.ieee.org/document/7326934/
    [18] 范开国, 黄韦艮, 常俊芳, 等.NCEP/QSCAT混合风向用于SAR图像反演高分辨率海面风速[J].遥感技术与应用, 2010, 25(6):873-876. doi:  10.11873/j.issn.1004-0323.2010.6.873
    [19] ALPERS W, BRÜMMER B. Atmospheric boundary layer rolls observed by the synthetic aperture radar aboard the ERS-1 satellite[J]. Journal of Geophysical Research Oceans, 1994, 99(C6):12613-12621. doi:  10.1029/94JC00421
    [20] 张毅, 蒋兴伟, 林明森, 等.基于小波分析的近岸海面风场反演研究[J].高技术通讯, 2011, 21(10):1056-1061. doi:  10.3772/j.issn.1002-0470.2011.10.010
    [21] 张雷, 石汉青, 杜华栋, 等.用小波分析反演星载SAR图像海面风向[J].遥感学报, 2013, 18(1):215-230. http://d.wanfangdata.com.cn/Periodical/ygxb201401015
    [22] 杨劲松, 黄韦艮, 周长宝, 等.合成孔径雷达图像的近岸海面风场反演[J].遥感学报, 2001, 5(1):13-16. doi:  10.11834/jrs.20010103
    [23] 程玉鑫, 艾未华, 孔毅, 等.基于影像纹理特征和外部风向的星载SAR海面风场反演研究[J].海洋科学, 2015, 39(12):157-164. doi:  10.11759/hykx20141027002
    [24] LIN H, XU Q, ZHENG Q. An overview on SAR measurements of sea surface wind[J]. Progress in Natural Science, 2008, 18(8):913-919. doi:  10.1016/j.pnsc.2008.03.008
    [25] WACKERMAN C C, RUFENACH C L, SHUCHMAN R A, et al. Wind vector retrieval using ERS-1 synthetic aperture radar imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(6):1343-1352. doi:  10.1109/36.544558
    [26] PORTABELLA M, STOFFELEN A, JOHANNESSEN J A. Toward an optimal inversion method for synthetic aperture radar wind retrieval[J]. Journal of Geophysical Research:Oceans, 2002, 107(C8):1-13. doi:  10.1029/2001JC000925/full
    [27] 王珂, 洪峻, 张问一, 等. SAR反演邻近岸海面风场方法[J].电子与信息学报, 2013, 35(8):1800-1805. http://d.wanfangdata.com.cn/Periodical/dzkxxk201308004
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  221
  • HTML全文浏览量:  81
  • PDF下载量:  360
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-08
  • 刊出日期:  2017-11-25

目录

    /

    返回文章
    返回