中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环境介质中有机污染物浓度时间变化滞后现象及其影响因素初探

莫俊超 何源 刘刚

莫俊超, 何源, 刘刚. 环境介质中有机污染物浓度时间变化滞后现象及其影响因素初探[J]. 华东师范大学学报(自然科学版), 2018, (3): 212-221. doi: 10.3969/j.issn.1000-5641.2018.03.022
引用本文: 莫俊超, 何源, 刘刚. 环境介质中有机污染物浓度时间变化滞后现象及其影响因素初探[J]. 华东师范大学学报(自然科学版), 2018, (3): 212-221. doi: 10.3969/j.issn.1000-5641.2018.03.022
MO Jun-chao, HE Yuan, LIU Gang. Preliminary study on temporal trend lag of organic pollutant concentrations in environmental media and its influencing factors[J]. Journal of East China Normal University (Natural Sciences), 2018, (3): 212-221. doi: 10.3969/j.issn.1000-5641.2018.03.022
Citation: MO Jun-chao, HE Yuan, LIU Gang. Preliminary study on temporal trend lag of organic pollutant concentrations in environmental media and its influencing factors[J]. Journal of East China Normal University (Natural Sciences), 2018, (3): 212-221. doi: 10.3969/j.issn.1000-5641.2018.03.022

环境介质中有机污染物浓度时间变化滞后现象及其影响因素初探

doi: 10.3969/j.issn.1000-5641.2018.03.022
基金项目: 

上海市国资委企业技术创新和能力提升项目 2016006

详细信息
    作者简介:

    莫俊超, 男, 硕士, 工程师, 研究方向为环境安全评价.E-mail:mjc@ghs.cn

    通讯作者:

    刘刚, 男, 教授级高工, 研究方向化学品危险性鉴定及安全评价.E-mail:lg@ghs.cn

  • 中图分类号: X592

Preliminary study on temporal trend lag of organic pollutant concentrations in environmental media and its influencing factors

  • 摘要: 选择131种有机物,通过构建EQC(EQuilibrium Criterion)标准环境的四级多介质模型,得出四种排放场景下,环境介质中有机物浓度的时间变化特征.在大多数情况下,环境介质内有机物浓度的时间变化出现滞后,lgKOW和持久性高的有机物浓度变化滞后最明显.相关分析表明,持久性为水相、大气相和土壤相中滞后时间的主要影响因素,lgKOW和持久性为沉积物相中的主要影响因素.通过回归分析,得到了滞后时间的预测公式.若沉积物相属于有机物的"汇",则其中有机物浓度变化会产生明显的滞后.上述研究结果为了解环境中有机物的迁移转化规律提供了理论依据.
  • 表  1  参数定义

    Tab.  1  Parameter definitions

    参数定义单位
    $Z_{1}$、$Z_{2}$、$Z_{3}$和$Z_{4}$水相、大气相、沉积物相和土壤相的逸度容量mol$\cdot $Pa$^{-1}\cdot $m$^{-3}$
    $V_{1}$、$V_{2}$、$V_{3}$和$V_{4}$水相、大气相、沉积物相和土壤相的体积m$^{3}$
    $f_{1}$、$f_{2}$、$f_{3}$和$f_{4}$水相、大气相、沉积物相和土壤相中有机物的逸度Pa
    $E_{1}$、$E_{2}$、$E_{3}$和$E_{4}$水相、大气相、沉积物相和土壤相中有机物的排放速率函数mol$\cdot $a$^{-1}$
    $D_{21}$大气相-水相迁移$D$值mol$\cdot $Pa$^{-1}\cdot $a$^{-1}$
    $D_{31}$沉积物相-水相迁移$D$值mol$\cdot $Pa$^{-1}\cdot $a$^{-1}$
    $D_{41}$土壤相-水相迁移$D$值mol$\cdot $Pa$^{-1}\cdot $a$^{-1}$
    $D_{12}$水相-大气相迁移$D$值mol$\cdot $Pa$^{-1}\cdot $a$^{-1}$
    $D_{13}$水相-沉积物相迁移$D$值mol$\cdot $Pa$^{-1}\cdot $a$^{-1}$
    $D_{42}$土壤相-大气相迁移$D$值mol$\cdot $Pa$^{-1}\cdot $a$^{-1}$
    $D_{24}$大气相-土壤相迁移$D$值mol$\cdot $Pa$^{-1}\cdot $a$^{-1}$
    $D_{1{\rm R}}$、$D_{2{\rm R}}$、$D_{3{\rm R}}$和$D_{4{\rm R}}$水相、大气相、沉积物相和土壤相中有机物的反应$D$值mol$\cdot $Pa$^{-1}\cdot $a$^{-1}$
    $D_{\rm 1out}$和$D_{\rm 2out}$水相和大气相中的平流$D$值mol$\cdot $Pa$^{-1}\cdot $a$^{-1}$
    下载: 导出CSV

    表  2  排放场景

    Tab.  2  Emission scenarios

    排放场景编号排放速率比例
    大气土壤沉积物
    11000
    20100
    30010
    41110
    下载: 导出CSV

    表  3  模型输入参数

    Tab.  3  Model input parameters

    参数单位
    分子量g$\cdot $mol$^{-1}$
    蒸汽压Pa
    水溶解度g$\cdot $m$^{-3}$
    lg$K_{OW}$/
    熔点
    水相中半衰期a
    大气相中半衰期a
    沉积物相中半衰期a
    土壤相中半衰期a
    水相中有机物的排放速率函数mol$\cdot $a$^{-1}$
    大气相中有机物的排放速率函数mol$\cdot $a$^{-1}$
    沉积物相中有机物的排放速率函数mol$\cdot $a$^{-1}$
    土壤相中有机物的排放速率函数mol$\cdot $a$^{-1}$
    下载: 导出CSV

    表  4  有机物的分类及典型有机物的参数

    Tab.  4  Classification of organic chemicals and parameters of typical organic chemicals

    分类水溶解度蒸汽压lg$K_{OW}$持久性典型有机物名称CAS蒸汽压/Pa水溶解度/(g$\cdot $m$^{-3})$lg$K_{OW}$半衰期/h
    大气相水相土壤相沉积物相
    1碘代苯$^{\ast }$591-50-41303403.285505 50017 00055 000
    2苯乙烯100-42-58803003.0551705501 700
    3三氟乙酸76-05-11.47$\times $10$^{4}$1$\times $10$^{6}$0.51 70055 00055 00055 000
    4乙酸乙烯酯108-05-41.41$\times $10$^{4}$2$\times $10$^{4}$0.735555170550
    5异丙甲草胺$^{\ast }$51218-45-24.2$\times $10$^{-3}$4303.135505 5005 50017 000
    62-甲-4-氯丙酸93-65-23.1$\times $10$^{-4}$6203.94171701701 700
    7六氯乙烷$^{\ast }$67-72-150503.9355 0005 50017 00055 000
    8正己烷110-54-32.02$\times $10$^{4}$9.54.11175501 7005 500
    9涕灭威$^{\ast }$116-06-34$\times $10$^{-3}$6$\times $10$^{3}$1.1555 50017 00055 000
    10胺甲萘63-25-22.67$\times $10$^{-5}$1202.36551705501 700
    11苯甲醇$^{\ast }$100-51-612801.15 5005 5005 50017 000
    12苯甲醇100-51-612801.1555555170
    13六氯苯118-74-12.3$\times $10$^{-3}$5$\times $10$^{-3}$5.57 35055 00055 00055 000
    14邻苯二甲酸二异辛酯117-81-71.33$\times $10$^{-5}$0.2855.11551705501 700
    15全氟辛酸铵3825-26-19.52$\times $10$^{-3}$43.341.9455 00055 00055 00055 000
    16秋兰姆137-26-81.3$\times $10$^{-3}$301.731701705501 700
    注: *表示半衰期经过调整
    下载: 导出CSV

    表  5  每个分类中典型有机物峰值浓度的滞后时间

    Tab.  5  Lag time of peak concentration for typical organic chemicals of each classification

    分类排放场景编号峰值浓度滞后时间/a分类排放场景编号峰值浓度滞后时间/a
    水相大气相土壤相沉积物相水相大气相土壤相沉积物相
    110.10.10.70.8910.20.20.40.2
    20.100.60.820.400.30.4
    30.70.60.61.330.40.30.30.5
    40.10.30.60.840.300.30.4
    21000.10.31010.10.10.20.2
    2000.10.320.100.20.2
    30.10.10.10.430.20.20.20.3
    4000.10.340.100.20.2
    310.20.20.30.21110.10.10.20.2
    20.200.20.320.100.10.2
    30.30.20.20.430.20.10.10.2
    40.20.10.20.340.10.10.10.2
    41000.10.1121000.10.1
    20000.120000.1
    30000.130000.1
    40000.140000.1
    510.20.20.90.71310.10.11.52.5
    20.500.81.020.102.31.5
    30.90.80.81.432.52.32.35.1
    40.300.80.840.10.12.31.5
    610.10.10.10.41410.10.10.20.4
    20.100.10.420.100.20.4
    30.10.10.10.430.20.20.20.5
    40.100.10.440.100.20.4
    710.10.10.81.21510.20.20.70.3
    20.100.81.220.600.60.7
    30.80.80.81.930.70.60.60.8
    40.10.30.81.240.40.10.60.5
    810.10.10.10.71610.10.10.20.1
    20.1000.720.100.10.2
    30.1000.730.20.10.10.2
    40.1000.740.100.10.2
    下载: 导出CSV

    表  6  滞后时间与四种分类参数的Spearman相关系数

    Tab.  6  Spearman correlation coefficients between lag time and four classification parameters

    排放场景编号环境介质蒸汽压水溶解度lg$K_{OW}$水相中半衰期
    滞后时间1-0.1740.140-0.0490.754**
    大气-0.1740.140-0.0490.754**
    土壤-0.183-0.1440.2130.801**
    沉积物-0.004-0.3420.841**0.501*
    2-0.2050.081-0.0100.747**
    大气NANANANA
    土壤-0.286-0.1230.3590.738**
    沉积物-0.035-0.3000.709**0.669**
    3-0.191-0.1650.2910.833**
    大气-0.286-0.1230.3590.738**
    土壤-0.286-0.1230.3590.738**
    沉积物-0.027-0.3020.672**0.693**
    4-0.2070.085-0.0200.748**
    大气0.289-0.1080.0620.721**
    土壤-0.286-0.1230.3590.738**
    沉积物-0.016-0.3050.721**0.658**
    *表示相关性达显著水平($P<$0.05), **表示相关性达极显著水平($P<$0.01), NA表示场景2中, 大气相中的滞后时间均为0, 不能计算出相关系数
    下载: 导出CSV

    表  7  EQC模型中滞后时间的预测公式

    Tab.  7  Prediction formulas for lag time in EQC model

    场景编号介质预测公式$R$
    10.048 28 (lg水相中半衰期) -0.005 181 (lg蒸汽压) -0.047 10.795
    大气0.049 87 (lg水相中半衰期) -0.005 680 (lg蒸汽压) -0.045 90.825
    土壤0.601 1 (lg土壤相中半衰期) -0.183 1 (lg水溶解度) -1.0030.783
    沉积物0.240 7 (lg沉积物相中半衰期) +0.209 85 (lg $K_{OW}) $-1.012 20.953
    20.074 41 (lg水相中半衰期) -0.029 71 (lg$K_{OW}) $-0.018 8 (lg蒸汽压)0.771
    大气NA/
    土壤0.411 2 (lg土壤相中半衰期) -0.162 0 (lg水溶解度) -0.5370.889
    沉积物0.277 (lg沉积物相中半衰期) +0.194 7 (lg$K_{OW}) $-1.076 30.952
    30.595 9 (lg土壤相中半衰期) +0.266 (lg$K_{OW}) $-2.1790.794
    大气0.456 5 (lg土壤相中半衰期) +0.232 7 (lg$K_{OW}) $-1.7070.859
    土壤0.401 7 (lg土壤相中半衰期) -0.166 4 (lg水溶解度) -0.5070.887
    沉积物0.853 (lg沉积物相中半衰期) +0.668 7 (lg$K_{OW}) $-4.1040.841
    40.060 71 (lg水相中半衰期) -0.015 36 (lg$K_{OW}) $-001 171 (lg蒸汽压) -0.019 30.804
    大气0.034 59 (lg大气相中半衰期) +0.007 49 (lg蒸汽压) -0.031 60.617
    土壤0.4017 (lg土壤相中半衰期) -0.1664 (lg水溶解度) -0.5070.887
    沉积物0.261 8 (lg沉积物相中半衰期) +0.201 08 (lg$K_{OW}) $-1.052 30.953
    注: NA表示场景2中, 大气相中的滞后时间均为0, 不能得出预测公式
    下载: 导出CSV

    表  8  每个分类中典型有机物的(${{D}}_{\bf 13}$- ${ D}_{31}-{ D}_{{3}{{\rm R}}}$)值

    Tab.  8  ($D_{13}-D_{31}-D_{3R})$ values for typical organic chemicals of each classification

    mol·Pa-1·a-1
    分类12345678910111213141516
    $D_{13}-D_{31}-D_{3R}$1.2$\times $10$^{8}$-4.5$\times $10$^{7}$-2.5$\times $10$^{7}$-7.9$\times $10$^{7}$2.4$\times $10$^{12}$-8.8$\times $10$^{14}$1.7$\times $10$^{8}$-1.8$\times $10$^{4}$-4.0$\times $10$^{11}$-1.0$\times $10$^{14}$-1.0$\times $10$^{7}$-1.0$\times $10$^{9}$1.0$\times $10$^{10}$-6.5$\times $10$^{13}$-7.9$\times $10$^{8}$-2.0$\times $10$^{11}$
    下载: 导出CSV
  • [1] DONALD D B, SYRGIANNIS J, CROSLEY R W, et al. Delayed deposition of organochlorine pesticides at a temperate glacier[J]. Environmental Science & Technology, 1999, 33(11):1794-1798. http://adsabs.harvard.edu/abs/1999EnST...33.1794D
    [2] VILLA S, VIGHI M, MAGGI V, et al. Historical trends of organochlorine pesticides in an alpine glacier[J]. Journal of Atmospheric Chemistry, 2003, 46(3):295-311. doi:  10.1023/A:1026316217354
    [3] 卢冰, 陈荣华, 王自磐, 等.北极海洋沉积物中持久性有机污染物分布特征及分子地层学记录的研究[J].海洋学报, 2005, 27(4):167-173. http://www.oalib.com/paper/4848335
    [4] 龚香宜, 祁士华, 吕春玲, 等.泉州湾沉积物柱状样中有机氯农药的垂直分布特征[J].海洋环境科学, 2007, 26(4):369-372. http://d.old.wanfangdata.com.cn/Periodical/hyhjkx200704017
    [5] BIGUS P, MAREK T, NAMIEŚNIK J. Historical records of organic pollutants in sediment cores[J]. Marine Pollution Bulletin, 2014, 78(1/2):26-42. https://www.sciencedirect.com/science/article/pii/S0025326X13007091
    [6] 贺心然, 邓贺天, 王华, 等.灌河口海域沉积物中有机氯农药的空间分布、来源解析与风险评估[J].海洋环境科学, 2015, 34(6):819-826. http://www.cqvip.com/QK/95945X/201506/666812666.html
    [7] 郦倩玉, 赵中华, 蒋豫, 等.鄱阳湖周溪湾沉积物中有机氯农药和多环芳烃的垂直分布特征[J].湖泊科学, 2016, 28(4):765-774. doi:  10.18307/2016.0409
    [8] CZUB G, MCLACHLAN M S. A food chain model to predict the levels of lipophilic organic contaminants in humans[J]. Environmental Toxicology and Chemistry, 2004, 23(10):2356-2366. doi:  10.1897/03-317
    [9] LIM D H, LASTOSKIE C M. A dynamic multimedia environemental and bioaccumulation model for brominated flame retardants in Lake Huron and Lake Erie, USA[J]. Environmental Toxicology and Chemistry, 2011, 30(5):1018-1025. doi:  10.1002/etc.v30.5
    [10] QUINN C L, WANIA F, CZUB G, et al. Investigating intergenerational differences in human PCB exposure due to variable emissions and reproductive behaviors[J]. Environmental Health Perspectives, 2011, 119(5):641-646. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.291.4841
    [11] GOUIN T, WANIA F. Time trends of Arctic contamination in relation to emission history and chemical persistence and partitioning properties[J]. Environmental Science & Technology, 2007, 41(17):5986-5992. http://www.ncbi.nlm.nih.gov/pubmed/17937271
    [12] CHOI S D, WANIA F. On the reversibility of environmental contamination with persistent organic pollutants[J]. Environmental Science & Technology, 2011, 45(20):8834-8841. doi:  10.1021/es2017544?ai=1mw0&ui=30qd4
    [13] PERSSON L M, BREITHOLTZ M, COUSINS I T, et al. Confronting unknown planetary boundary threats from chemical pollution[J]. Environmental Science & Technology, 2013, 47(22):11262-12619. http://www.academia.edu/14077990/Confronting_Unknown_Planetary_Boundary_Threats_from_Chemical_Pollution
    [14] MACLEOD M, BREITHOLTZ M, COUSINS I T, et al. Identifying chemicals that are planetary boundary threats[J]. Environmental Science & Technology, 2014, 48(19):11057-11106. https://www.researchgate.net/publication/265256689_Identifying_Chemicals_That_Are_Planetary_Boundary_Threats
    [15] ROCKSTRÖM J, STEFFEN W, NOONE K, et al. A safe operating space for humanity[J]. Nature, 2009, 461(24):472-475. https://www.researchgate.net/publication/44160502_A_safe_operating_space_for_humanity
    [16] MACKAY D, GUARDO A D, PATERSON S, et al. Evaluating the environmental fate of a variety of types of chemicals using the EQC model[J]. Environmental Toxicology and Chemistry, 1996, 15(9):1627-1637. doi:  10.1002/etc.v15:9
    [17] ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT. Guidance document on aquatic toxicity testing of difficult substances and mixtures[M]. Paris:OECD Publishing, 2000:48-49.
    [18] ACHTEN C, PÜTTMAN W, KLASMEIER J. Compartment modeling of MTBE in the generic environment and estimations of the aquatic MTBE input in Germany using the EQC model[J]. Journal of Environmental Monitoring, 2002, 4(5):747-753. doi:  10.1039/B201879A
    [19] MACLEOD M, THOMAS E M, FOSTER K L, et al. Applications of contaminant fate and bioaccumulation models in assessing ecological risks of chemicals::modelodel modelpouds, compoucompoumpou[J]. Environmental Science & Technology, 2004, 38(23):6225-6233.
    [20] 侯小凤, 陈玮琪, 张珞平, 等.沿海农业区施用农药的环境费用分析及管理对策[J].厦门大学学报:自然科学版, 2004, 43(S):236-242. http://dspace.xmu.edu.cn/dspace/handle/2288/1175
    [21] 吴磊, 谢绍东.应用EQC模型评估灭蚁灵和十氯酮的环境归趋[J].环境科学研究, 2007, 20(5):50-56. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxyj200705010
    [22] KIM J, POWELL D E, LAUREN H, et al. Uncertainty analysis using a fugacity-based multimedia mass-balance model:Application of the updated EQC model to decamethylcyclopentasiloxane (D5)[J]. Chemosphere, 2013, 93(5):819-829. doi:  10.1016/j.chemosphere.2012.10.054
    [23] TRINH H T, ADRIAENS P, CHRISTIAN M L. Fate factors and emission flux estimates for emerging contaminants in surface waters[J]. AIMS Environmental Science, 2016, 3(1):21-44. doi:  10.3934/environsci.2016.1.21
    [24] O'DRISCOLL K, ROBINSON J, CHIANG W S, et al. The environmental fate of polybrominated diphenyl ethers (PBDEs) in western Taiwan and coastal waters:evaluation with a fugacity-based model[J]. Environmental Science and Pollution Research, 2016, 23(13):13222-13234. doi:  10.1007/s11356-016-6428-4
    [25] Canadian Environmental Modeling Centre. Level Ⅲ Fugacity-Based Multimedia Environmental Model: Canada[CP/OL]. Oshawa: Trent University. 2004[2017-05-04]. http://www.trentu.ca/academic/aminss/envmodel/models/L3280.html.
    [26] EPA U S. EPI Suite: United States[CP/OL]. 4th ed. 2012[2017-05-04]. http://www.epa.gov/tsca-screening-tools/download-epi-suitetm-estimation-program-interface-v411.
    [27] HUGHES L, MACKAY D, POWELL D E, et al. An updated state of the science EQC model for evaluating chemical fate in the environment:Application to D5(decamethylcyclopentasiloxane)[J]. Chemosphere, 2012, 87(2):118-124. doi:  10.1016/j.chemosphere.2011.11.072
    [28] ARNOT J A, MACKAY D, WEBSTER E. Screening level risk assessment model for chemical fate and effects in the environment[J]. Environmental Science & Technology, 2006, 40(7):2316-2323. http://cat.inist.fr/?aModele=afficheN&cpsidt=17712419
    [29] MACKAY D. Multimedia environmental models:the fugacity approach[M]. 2nd ed. BOCA Raton:Lewis Publisher, 2001.
    [30] 莫俊超, 王少野, 汤保华.三种环境动力学模型建模方式的比较[J].化工环保, 2014, 35(5):461-466. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_hghb201405013
    [31] 杨墨, 张超杰, 曲燕, 等.三氟乙酸的环境影响来源及其降解[J].环境科学与技术, 2010, 33(6):5-10. http://www.cqvip.com/QK/90776X/201006/1001302286.html
    [32] 杨兰琴, 冯雷雨, 陈银广.中国水环境中全氟化合物的污染水平及控制策略[J].化工进展, 2012, 31(10):2304-2312. http://www.doc88.com/p-7896112148598.html
    [33] 孔祥云, 王华, 陈虹, 等.全氟化合物的环境污染与毒性研究[J].环境科学与技术, 2015, 38(6P):5-9. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=fjks2015s1002&dbname=CJFD&dbcode=CJFQ
    [34] 张卿川, 夏邦寿, 杨正宁, 等.国内外对挥发性有机物定义与表征的问题研究[J].污染防治技术, 2014, 27(5):3-7. http://www.cqvip.com/QK/98020X/201405/663090699.html
    [35] ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT. Guidance document on aquatic toxicity testing of difficult substances and mixtures[M]. Paris:OECD Publishing, 2000:11.
    [36] 杨霓云, 王宏.新化学物质环境风险评估技术方法[M].北京:中国环境科学出版社, 2012:80.
    [37] 杨霓云, 王宏.新化学物质环境风险评估技术方法[M].北京:中国环境科学出版社, 2012:85-86.
    [38] 崔玫意, 张玉虎, 陈秋华.Box-Cox正态分布及其在降雨极值分析中的应用[J].数理统计与管理, 2017, 36(1):8-17. http://www.adearth.ac.cn/article/2014/1001-8166-29-8-0956.html
    [39] MEIJER S N, HALSALL C J, HARNER T, et al. Organochlorine pesticide residues in archived UK soil[J]. Environmental Science & Technology, 2001, 35(10):1989-1995. http://adsabs.harvard.edu/abs/2001EnST...35.1989M
    [40] BERG T, KALLENBORN R, MANO S. Temporal trends in atmospheric heavy metal and organochlorine concentrations at Zeppelin, Svalbard[J]. Arctic, Antarctic, and Alpine Research, 2004, 36(3):283-290. doi:  10.1657/1523-0430%282004%29036%5B0284%3ATTIAHM%5D2.0.CO%3B2
    [41] HUNG H, KATSOYIANNIS A A, BRORSTRÖM-LUNDÉN E, et al. Temporal trends of Persistent Organic Pollutants (POPs) in Arctic air:20 years of monitoring under the Arctic Monitoring and Assessment Programme (AMAP)[J]. Environmental Pollution, 2016, 217(10):52-61. http://www.ncbi.nlm.nih.gov/pubmed/26874550
    [42] 莫俊超, 舒耀皋. 水-沉积物两相系统中动力学逸度模型的解析解[C/CD]//2017中国环境科学学会科学与技术年会论文集. 北京: 《中国学术期刊(光盘版)》电子杂志社有限公司, 2017: 2481-2485.
  • 加载中
计量
  • 文章访问数:  244
  • HTML全文浏览量:  75
  • PDF下载量:  336
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-15
  • 刊出日期:  2018-05-25

目录

    /

    返回文章
    返回