中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

适用于不同尺寸血管的脱细胞方法研究

张红霞 翟万银 张红锋

张红霞, 翟万银, 张红锋. 适用于不同尺寸血管的脱细胞方法研究[J]. 华东师范大学学报(自然科学版), 2012, (4): 50-60.
引用本文: 张红霞, 翟万银, 张红锋. 适用于不同尺寸血管的脱细胞方法研究[J]. 华东师范大学学报(自然科学版), 2012, (4): 50-60.
ZHANG Hong-xia, ZHAI Wan-yin, ZHANG Hong-feng. A general decellularization method for preparing vascular scaffolds from blood vessels of different types, diameters and wall-thicknesses[J]. Journal of East China Normal University (Natural Sciences), 2012, (4): 50-60.
Citation: ZHANG Hong-xia, ZHAI Wan-yin, ZHANG Hong-feng. A general decellularization method for preparing vascular scaffolds from blood vessels of different types, diameters and wall-thicknesses[J]. Journal of East China Normal University (Natural Sciences), 2012, (4): 50-60.

适用于不同尺寸血管的脱细胞方法研究

详细信息
  • 中图分类号: Q33

A general decellularization method for preparing vascular scaffolds from blood vessels of different types, diameters and wall-thicknesses

  • 摘要: 将胰酶消化与反复冻融相结合,旨在建立一种适用于各种类型血管的通用脱细胞方法,如隐静脉、颈动脉和主动脉。隐静脉、颈动脉和主动脉经胰酶消化和反复冻融脱细胞处理后,采用苏木精伊红染色、Masson三色染色及弹性纤维染色来定性评价脱细胞效果和细胞外基质的保存效果,采用Image-Pro-Plus 5.1图像处理软件作进一步定量评价;扫描电子显微镜观察胞外基质的完整性。结果显示,组织染色及定量分析表明此胰酶消化与反复冻融相结合的方法完全脱除了隐静脉、颈动脉和主动脉得细胞,细胞外介质结构保存良好且完整。扫描电子显微镜观察亦表明细胞外基质保存良好,且基质纤维致密规整。表明胰酶消化与反复冻融相结合的脱细胞方法是一种很有前景的制备各种不同类型血管支架的方法。
  • [1] 1] CHO S W, LIM S H, KIM I K, et al. Small-diameter blood vessels engineered with bone marrow-derived cells[J]. Ann Surg, 2005, 241: 506-515.

    [2] ISENBERG B C, WILLIAMS C, TRANQUILLO R T. Small-diameter artificial arteries engineered in vitro[J]. Circ Res, 2006, 98: 25-35.

    [3] GUSIC R J, PETKO M, MYUNG R, et al. Mechanical properties of native and ex vivo remodeled porcine saphenous veins[J]. J Biomech, 2005, 38: 1770-1779.

    [4] SCHANER P K, MARTIN N D, TULENKO T N, et al. Decellularized veins as a potential scaffold for vascular tissue engineering[J]. J Vasc Surg, 2004, 40: 146-152.

    [5] CONKLIN B S, RICHTER E R, KREUTZIGER K L, et al. Development and evaluation of a novel decellularized vascular xenograft[J]. Med Eng Phys, 2002, 24: 173-183.

    [6] WILLIAMS C, LIAO J, JOYCE E M, et al. Altered structural and mechanical properties in decellularized rabbit carotid arteries[J]. Acta Biomaterialia, 2009(5): 993-1005.

    [7] SHUM-TIM D, STOCK U, HRKACH J, et al. Tissue engineering of autologous aorta using a new biodegradable polymer[J]. Ann Thorac Surg, 1999, 68: 2298-2304.

    [8] LIU G F, HE Z J, YANG D P, et al. Decellularized aorta of fetal pigs as a potential scaffold for small diameter tissue engineered vascular graft[J]. Chin Med J, 2008, 121: 1398-1406.

    [9] ZENG W, YUAN W, LI L, et al. The promotion of endothelial progenitor cells recruitment by nerve growth factors in tissue-engineered blood vessels[J]. Biomaterials, 2010, 31: 1636-1645.

    [10] ZHAO Y, ZHANG S, ZHOU J, et al. The development of a tissue-engineered artery using decellularized scaffold and autologous ovine mesenchymal stem cells[J]. Biomaterials, 2010, 31: 296-307.

    [11] LEVY R J, SCHOEN F J, ANDERSON H C, et al. Cardiovascular implant calcification: A survey and update[J]. Biomaterials, 1991(12): 707-714.

    [12] GIBERT T W, SELLARO T L, BADYLAK S F. Decellularization of tissues and organs[J]. Biomaterials, 2006, 27: 3675-3683.

    [13] ALLAIRE E, GUETTIER C, BRUNEVAL P, et al. Cell-free arterial grafts: Morphologic characteristics of aortic isografts, allografts and xenografts in rats[J]. J Vasc Surg, 1994, 19: 446-456.

    [14] VOET D, VOET J G, PRATT C W. Fundamentals of Biochemistry[M]. New York: Wiley, 2002.

    [15] LU X, ZHAI W, ZHOU Y, et al. Crosslinking effect of nordihydroguaiaretic acid (NDGA) on decellularized heart valve scaffold for tissue engineering[J]. J Mater Sci Mater Med, 2010, 21: 473-480.

    [16] SEDDON A M, CUMOW P, BOOTH P J. Membrane Proteins, Lipids and detergents: Not just a soap opera[J]. Biochim Biophys Acta, 2004, 1666: 105-117.

    [17] DAHL S L, KOH J, PRABHAKAR V, et al. Decellularized native and engineered arterial scaffolds for trans-plantation[J]. Cell Transplant, 2003(12): 659-666.

    [18] RIEDER E, KASIMIR M T, SILBERHUMER G, et al. Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cell[J]. J Thorac Cardiovasc Surg, 2004, 127: 399-405.

    [19] BADER A, STEINHOFF G, STROBL K, et al. Engineering of human vascular aortic tissue based on a xenogeneic starter matrix[J]. Transplantation, 2000, 70: 7-14.

    [20] CRAPO P M, GILBERT T W, BADYLAK S F. An overview of tissue and whole organ decellularization processes[J]. Biomaterials, 2011, 32: 3233-3243.

    [21] JACKSON DW, GROOD E S, AMOCZKY S P, et al. Cruciate reconstruction using freeze dried anterior cruciate ligament allograft and a ligament augmentation device (LAD). An experimental study in a goat model[J]. Am J Sports Med, 1987, 15: 528-538.

    [22] JACKSON D W, GROOD E S, AMOCZKY S P, et al. Freeze dried anterior cruciate ligament allografts. preliminary studies in a goat model[J]. Am J Sports Med, 1987, 15: 295-303.

    [23] JACKSON D W, GROOD E S, COHN B T, et al. The effects of in situ freezing on the anterior cruciate ligament. an experimental study in goats[J]. J Bone Joint Surg Am, 1991, 73: 201-213.

    [24] JACKSON D W, GROOD E S, WILCOX P, et al. The effects of processing techniques on the mechanical properties of bone-anterior cruciate ligament-bone allografts. An experimental study in goats[J]. Am J Sports Med, 1988, 16: 101-105.

    [25] JACKSON D W, WINDLER G E, SIMON T M. Intraarticular reaction associated with the use of freeze-dried, ethylene oxide-sterilized bone-patella tendon-bone allografts in the reconstruction of the anterior cruciate ligament[J]. Am J Sports Med, 1990, 18: 1-10.

    [26] ROBERTS T S, DREZ D, MCARTHY W, et al. Anterior cruciate ligament reconstruction using freeze-dried, ethylene oxide-sterilized, bone-patellar tendon-bone allografts. Two year results In thirty-six patients[J]. Am J Sports Med, 1991, 19: 35-41.

    [27] GULATI A K. Evaluation of acellular and cellular nerve grafts in repair of rat peripheral nerve[J]. J Neurosurg, 1988, 68: 117-123.

    [28] ZHOU J, FRITZE O, SCHLEICHER M, et al. Impact of heart valve decellularization on 3-D ultrastructure, immunogenicity and thrombogenicity[J]. Biomaterials, 2010, 31: 2549-2554.

    [29] FUNAMOTO S, NAM K, KIMURA T, et al. The use of high-hydrostatic pressure treatment to decellularize blood vessels[J]. Biomaterials, 2010, 31: 3590-3595.

    [30] BADER A, SCHILLING T, TEEBKEN O E, et al. Tissue engineering of heart valves human endothelial cell seeding of detergent acellularized porcine valves[J]. Eur J Cardiothoracic Surg, 1998, 14: 279-284.

    [31] HU G, XING B, OU L, et al. Decellularization of arteries and evaluation of extracellular matrix as scaffolds [J]. Chin J Biomed Eng, 2008, 27: 912-921.

    [32] SHAO J, WU L, WU J, et al. Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress [J]. Lab Chip, 2009, 9(21): 3118-3125.

    [33] SHAO J, WU L, WU J, et al. A microfluidic chip for permeability assays of endothelial monolayer [J]. Biomed Microdevices, 2010, 12(1): 81-88.

    [34] ROBERT L, HORNEBECK W. Elastin and Elastases[M]. Florida: CRC Press, Inc., 1989: 11-18.                                                                                                                                                   [35] JOSSET Y, NASRALLAH F, JALLOT E, et al. Influence of physicochemical reactions of bioactive glass on the behavior and activity of human osteoblasts in vitro[J]. J Biomed Mater Res, 2003, 67: 1205-1218.

    [36] ZHAO L, CHANG J, ZHAI W. Effect of crystallographic phases of TiO2 on hepatocyte attachment, proliferation and morphology[J]. J Biomater Appl, 2005, 19: 237-252.

    [37] DAHL S L, KOH J, PRABHAKAR V, et al. Decellularized native and engineered arterial scaffolds for trans-plantation[J]. Cell Transplant, 2003(12): 659-666.

    [38] SCHMIDT C E, BAIER J M. Acellular vascular tissues: Natural biomaterials for tissue repair and tissue engineering[J]. Biomaterials, 2000, 21: 2215-2231.

    [39] OTT H C, MATTHIESEN T S, GOH S K, et al. Perfusion-decellularized matrix: Using nature’s platform to engineer a bioartificial heart[J]. Nat Med, 2008, 14: 213-221.

    [40] PENTERSEN T H, CALLE E A, ZHAO L, et al. Tissue-engineered lungs for in vivo implantation[J]. Science, 2010, 329: 538-541.
  • [1] 张红丽, 尹国宇, 郑艳玲, 高娟, 高灯州, 常永凯, 刘程.  沉积物再悬浮对长江口潮滩上覆水体脱氮过程的影响 . 华东师范大学学报(自然科学版), 2020, (3): 78-87. doi: 10.3969/j.issn.1000-5641.201941007
  • 加载中
计量
  • 文章访问数:  2571
  • HTML全文浏览量:  2
  • PDF下载量:  3670
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-04-01
  • 修回日期:  2011-07-01
  • 刊出日期:  2012-07-25

适用于不同尺寸血管的脱细胞方法研究

  • 中图分类号: Q33

摘要: 将胰酶消化与反复冻融相结合,旨在建立一种适用于各种类型血管的通用脱细胞方法,如隐静脉、颈动脉和主动脉。隐静脉、颈动脉和主动脉经胰酶消化和反复冻融脱细胞处理后,采用苏木精伊红染色、Masson三色染色及弹性纤维染色来定性评价脱细胞效果和细胞外基质的保存效果,采用Image-Pro-Plus 5.1图像处理软件作进一步定量评价;扫描电子显微镜观察胞外基质的完整性。结果显示,组织染色及定量分析表明此胰酶消化与反复冻融相结合的方法完全脱除了隐静脉、颈动脉和主动脉得细胞,细胞外介质结构保存良好且完整。扫描电子显微镜观察亦表明细胞外基质保存良好,且基质纤维致密规整。表明胰酶消化与反复冻融相结合的脱细胞方法是一种很有前景的制备各种不同类型血管支架的方法。

English Abstract

张红霞, 翟万银, 张红锋. 适用于不同尺寸血管的脱细胞方法研究[J]. 华东师范大学学报(自然科学版), 2012, (4): 50-60.
引用本文: 张红霞, 翟万银, 张红锋. 适用于不同尺寸血管的脱细胞方法研究[J]. 华东师范大学学报(自然科学版), 2012, (4): 50-60.
ZHANG Hong-xia, ZHAI Wan-yin, ZHANG Hong-feng. A general decellularization method for preparing vascular scaffolds from blood vessels of different types, diameters and wall-thicknesses[J]. Journal of East China Normal University (Natural Sciences), 2012, (4): 50-60.
Citation: ZHANG Hong-xia, ZHAI Wan-yin, ZHANG Hong-feng. A general decellularization method for preparing vascular scaffolds from blood vessels of different types, diameters and wall-thicknesses[J]. Journal of East China Normal University (Natural Sciences), 2012, (4): 50-60.
参考文献 (1)

目录

    /

    返回文章
    返回