中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚吡咯结构与导电性能的研究

于波 徐学诚

于波, 徐学诚. 聚吡咯结构与导电性能的研究[J]. 华东师范大学学报(自然科学版), 2014, (4): 77-87.
引用本文: 于波, 徐学诚. 聚吡咯结构与导电性能的研究[J]. 华东师范大学学报(自然科学版), 2014, (4): 77-87.
YU Bo, XU Xue-cheng. Structure-conductive property relationship of polypyrrole[J]. Journal of East China Normal University (Natural Sciences), 2014, (4): 77-87.
Citation: YU Bo, XU Xue-cheng. Structure-conductive property relationship of polypyrrole[J]. Journal of East China Normal University (Natural Sciences), 2014, (4): 77-87.

聚吡咯结构与导电性能的研究

详细信息
  • 中图分类号: O631.1+1

Structure-conductive property relationship of polypyrrole

  • 摘要: 利用化学氧化法制备导电聚吡咯,通过改变制备温度得到了不同的样品.用固体13C NMR谱、FTIR光谱、Raman光谱、XRD和XPS等手段进行分析.结果表明聚吡咯的电导率随着制备温度的升高而逐渐降低,说明不同温度下制备的聚吡咯内部结构存在差异.当制备温度较低时,生成的聚吡咯主要结构是以-方式连接的线性分子链,这种连接方式使得高分子同时趋向于形成平面化的构型和构象,保证了高分子具有较高的规整度、共轭度和电导率.随着制备温度的升高,分子链中-连接方式的比例逐渐降低,分子的结构遭破坏,有序度降低,趋向于生成构象相对扭曲、缠结的空间稳定态,最终导致了分子共轭链长变短,材料的导电性能降低.
  • [1] [1] ZHANG Y J, YE J T, YOMOGIDA Y, et al. Formation of a stable p-n junction in a liquid-gated MoS2 ambipolar transistor[J]. Nano Letters, 2013, 13:3023-3028.

    [2] YUAN W Z, LAM J W Y, SHEN X Y, et al. Functional polyacetylenes carrying mesogenic and polynuclear aromatic pendants polymer synthesis[J]. Macromolecules, 2009, 42:2523-2531.

    [3] ROSENTHAL D, RUTA M, SCHLOGL R, KIWI-MINSKER L. Combined XPS and TPD study of oxygen-functionalized carbon nanofibers grown on sintered metal fibers[J]. Carbon, 2010, 48:1835-1843.

    [4] WU J, WALKER V.E.J, BOYD R J. A theoretical study of the structure and conductivity of polycytosineacetylene[J]. Chemical Physics Letters, 2011, 506:243-247.

    [5] YANG C, LIU P. Polypyrrole conductive mica composites preparation, characterization, and application in supercapacitor[J]. Synthetic Metals, 2010, 160:768-773.

    [6] ZHU J-H, WEI S-Y, ZHANG L, et al. Conductive polypyrroleTungsten oxide metacomposites with negative permittivity[J]. The Journal of Physical Chemistry C, 2010, 114:16335-16342.

    [7] BISWAS S, DRZAL L T. Multilayered nanoarchitecture of graphene nanosheets and polypyrrole nanowires for high performance supercapacitor electrodes[J]. Chemistry of materials, 2010, 22:5667-5671.

    [8] FONNER J M, SCHMIDT C E, REN P. A combined molecular dynamics and experimenta l study of doped polypyrrole[J]. Polymer, 2010, 51:4985-4493.

    [9] JAE Y L, CHRIS A B, AARON S G, CHRISTINE E S. Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications[J]. Biomaterials, 2009, 30:4325-4335.

    [10] BOSE S, KUILA T, UDDIN M E, et al. In-situ synthesis and characterization of electrically conductive[J]. Polymer, 2010, 51:5921-5928.

    [11] ANGELI A. Sopra i neri di pirrolo[J]. Gazzetta Chimica Italiana, 1916, 46:279-285.

    [12] DALL'OLIO A, DASCOLA G, VACARA V, et al. Resonance paramagnetique electronique et conductivité d'un noir d'oxypyrrol electrolytique[J]. Academie des Sciences Serie, 1968:267c, 433-441.

    [13] GARDINI G P. The oxidation of monocyclic pyrroles Advances in Heterocyclic Chemistry[J]. Advances in Heterocyclic Chemistry, 1973, 15, 67-98.

    [14] DIAZ A F, KANAZAWA K K. OARDINI G P. Electrochemical polymerization of pyrrole[J]. Journal of the Chemical Society: Chemical Communications, 1979:635-636.

    [15] KANAZAWA K K, DIAZ A F, GEISS R H. 'Organic metals': polypyrrole, a stable synthetic 'metallic' polymer[J]. Journal of the Chemical Society: Chemical Communications, 1979:854-855.

    [16] DUCHET J, LEGRAS R, DEMOUSTIER C S. Chemical synthesis of polypyrrole structure-properties relationship[J]. Synthetic Metals, 1998, 98:113-122.

    [17] CARRASCO P M, GRANDE H J, CORTAZAR M, ALBERDI J M. Structure-conductivity relationships in chemical polypyrroles of low, medium and high conductivity[J]. Synthetic Metals, 2006, 156:420-425.

    [18] CARQUIGNY S, SANCHEZ J B, BERGER F, LAKARD B. Ammonia gas sensor based on electrosynthesized polypyrrole films[J]. Talanta, 2009, 78:199-206.

    [19] 李永舫. 导电聚吡咯的研究[J]. 高分子通报, 2005, 8:51-57.

    [20] MCNEILL R, SIUDAK R, WARDLAW J H, WEISS D E. Electorinic conduction in polymers I.The chemical structure of polypyrrole[J]. Australian Journal of Chemistry, 1963, 16:1056-1075.

    [21] YURTSEVER M, YURTSEVER E. Structural studies of polypyrroles I. An ab-initio evaluation of bonding through α and β carbons[J]. Synthetic Metals, 1999, 98:221-227.

    [22] MALITESTA C, LOSITO I, SABBATINI L, ZAMBONIN P G. New findings on polypyrrole chemical structure by XPS coupled to chemical derivatization labelling[J]. Journal of Electron Spectroscopy and Related Phenomena, 1995, 76:629-634.

    [23] DEVREUX F, BIDAN G, SYED A A, TSINTAVIS C J. Solid state 13C NMR in conducting polymers[J]. Journal de Physique, 1985, 46:1595-1601.

    [24] JOHNSON B S, WOLF J H, ZALUSKY A S, HILLMYER M A. Template syntheses of polypyrrole nanowires and CdS nanoparticles in porous polymer monoliths[J]. Chemistry of Materials, 2004, 16:2909-2917.

    [25] RAJAGOPALAN P, IROH J O. Characterization of polyaniline-polypyrrole composite coatings on low carbon steel a XPS and infrared spectroscopy study[J]. Applied Surface Science, 2003, 218:58-69.

    [26] STREET G B, CLARKE T C, GEISS R H, et al. Characterization of polypyrrole[J]. Journal de Physique, 1983, 44:c3, 559-606.

    [27] LIU Y-C, HWANG B-J, JIAN W-J, SANTHANAM R. In situ cyclic voltammetry-surface-enhanced Raman spectroscopy studies on the doping undoping of polypyrrole film[J]. Thin Solid Films, 2000, 374:85-91.
  • [1] 施沈阳, 葛建忠, 陈建忠, 郑晓琴, 丁平兴.  基于FVCOM的物理—生物地球化学耦合模型构建与应用 . 华东师范大学学报(自然科学版), 2020, (3): 55-67. doi: 10.3969/j.issn.1000-5641.201941008
    [2] 张红丽, 尹国宇, 郑艳玲, 高娟, 高灯州, 常永凯, 刘程.  沉积物再悬浮对长江口潮滩上覆水体脱氮过程的影响 . 华东师范大学学报(自然科学版), 2020, (3): 78-87. doi: 10.3969/j.issn.1000-5641.201941007
    [3] 郭晓娜, 陈睿山, 李强, 潘真真.  IPBES土地退化与恢复驱动因素审视 . 华东师范大学学报(自然科学版), 2020, (3): 109-118. doi: 10.3969/j.issn.1000-5641.201941009
    [4] 翟韩豫, 薛迅.  洛伦兹对称破缺与宇宙加速膨胀 . 华东师范大学学报(自然科学版), 2020, (2): 83-89. doi: 10.3969/j.issn.1000-5641.201922011
    [5] 戴磊.  一致Fredholm指标性质与(ω1)性质 . 华东师范大学学报(自然科学版), 2020, (2): 1-7. doi: 10.3969/j.issn.1000-5641.201911004
    [6] 黄斌冰, 谢琰, 谢文辉, 赵振杰, 李欣.  基于微液滴的 ZnO 纳米结构制备及荧光检测性能研究 . 华东师范大学学报(自然科学版), 2020, (2): 131-139. doi: 10.3969/j.issn.1000-5641.201933001
  • 加载中
计量
  • 文章访问数:  1922
  • HTML全文浏览量:  2
  • PDF下载量:  2522
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-01
  • 修回日期:  2013-12-01
  • 刊出日期:  2014-07-25

聚吡咯结构与导电性能的研究

  • 中图分类号: O631.1+1

摘要: 利用化学氧化法制备导电聚吡咯,通过改变制备温度得到了不同的样品.用固体13C NMR谱、FTIR光谱、Raman光谱、XRD和XPS等手段进行分析.结果表明聚吡咯的电导率随着制备温度的升高而逐渐降低,说明不同温度下制备的聚吡咯内部结构存在差异.当制备温度较低时,生成的聚吡咯主要结构是以-方式连接的线性分子链,这种连接方式使得高分子同时趋向于形成平面化的构型和构象,保证了高分子具有较高的规整度、共轭度和电导率.随着制备温度的升高,分子链中-连接方式的比例逐渐降低,分子的结构遭破坏,有序度降低,趋向于生成构象相对扭曲、缠结的空间稳定态,最终导致了分子共轭链长变短,材料的导电性能降低.

English Abstract

于波, 徐学诚. 聚吡咯结构与导电性能的研究[J]. 华东师范大学学报(自然科学版), 2014, (4): 77-87.
引用本文: 于波, 徐学诚. 聚吡咯结构与导电性能的研究[J]. 华东师范大学学报(自然科学版), 2014, (4): 77-87.
YU Bo, XU Xue-cheng. Structure-conductive property relationship of polypyrrole[J]. Journal of East China Normal University (Natural Sciences), 2014, (4): 77-87.
Citation: YU Bo, XU Xue-cheng. Structure-conductive property relationship of polypyrrole[J]. Journal of East China Normal University (Natural Sciences), 2014, (4): 77-87.
参考文献 (1)

目录

    /

    返回文章
    返回